
 

Using the TMS styler components 

 

1/4 

Using the TMS form-wide or application-wide styler components 

 

Over the past couple of years, appearances as these from Windows XP, Office 2003, Visual 

Studio .NET and now Office 2007/2010 have set standards for how an application should look. 

The techniques for defining the appearance of controls have also become more complex. 

Before Windows XP, controls were generally flat with single colors for normal state, hover 

state, checked or down state...  With Windows XP, Office 2003, simple gradients for the 

different control states have become the norm. Now with Office 2007/2010, appearance 

control has become yet more complex. Controls can now have multiple radial/linear gradients 

and have subtle transitioning of appearance from state to state. To be able to have full control 

& flexibility over the appearance of controls, the number of properties has been steadily 

increasing over the years. 

 

At TMS software we have always tried and keep trying to provide components with the latest 

look & feel as well as keeping backwards compatibility. We want to enable you to create 

applications with a brand new appearance and simultaneously do not want to break the look & 

feel of applications that were created perhaps years ago when installing new updates of the 

components. As the requirements for appearance control have evolved over the years, so have 

the properties to control look and feel of the TMS components. It has not always been easy to 

apply new appearance types to existing controls that were originally not designed for more 

complex appearances. This has caused that various components have sometimes different 

ways to control the latest and greatest appearance, let alone to synchronously change 

appearance of multiple controls to a new consistent style. 

 

We have spent quite some effort to simplify form-wide and application-wide appearance 

control for TMS components and possibly also your custom controls. To do this, two new 

components have been designed: 

 

TAdvFormStyler 

TAdvAppStyler 

 

A TAdvFormStyler is supposed to be dropped on a form. In a way, it will control just like 

TXPManifest the style of the TMS controls on the form. A TAdvFormStyler will only affect 

controls on the form itself. For application-wide appearance control, in addition to a 

TAdvFormStyler on a form, a TAdvAppStyler component can be dropped on a datamodule and 

is connected to the TAdvFormStyler components on the forms. By setting then a single 

property in TAdvAppStyler on the datamodule, the complete application appearance can 

change, both at design time but also dynamically at runtime.  

 

 

 

 

 

 

 

 

 

 

 

 



 

Using the TMS styler components 

 

2/4 

Scenario 

 

 

 

The component TAdvFormStyler has a property style. Setting this style property causes all 

components on the form that support the interface to set the style to change to the selected 

style. Similary, setting the style property for the TAdvAppStyler on a central datamodule 

invokes all TAdvFormStyler style changes and thus the style of all TMS controls on the form. 

Currently the TAdvFormStyler, TAdvAppStyler support following styles: 

 

 tsOffice2003Blue : Office 2003 style on a blue XP theme  

 tsOffice2003Silver : Office 2003 style on a silver XP theme 

 tsOffice2003Olive : Office 2003 style on an olive XP theme  

 tsOffice2003Classic : Office 2003 style on a non themed XP or pre XP operating system 

 tsOffice2007Luna : Office 2007 Luna style 

 tsOffice2007Obsidian : Office 2007 Obsidian style 

 tsOffice2007Silver: Office 2007 Silver style 

 tsWindowsXP : Windows XP / Office XP style  

 tsWhidbey : Visual Studio 2005 style 

 tsCustom : unforced style 

 tsWindowsVista: Windows Vista style 

 tsWindows7 : Windows 7 style 

 tsTerminal : reduced color set for use with terminal servers  

 tsOffice2010Blue : Office 2010 Blue style 

 tsOffice2010Silver : Office 2010 Silver style 

 tsOffice2010Black : Office 2010 Black style 

 

Following TMS controls are currently TAdvFormStyler, TAdvAppStyler aware:  

 

 TAdvAlertWindow 

 TAdvCardList 

 TAdvDockPanel 

 TAdvInputTaskDialogEx 

 TAdvMainMenu & TAdvPopupMenu (via TAdvMenuStyler) 

 TAdvMemo 



 

Using the TMS styler components 

 

3/4 

 TAdvNavBar 

 TAdvOfficePager (via TAdvOfficePagerOfficeStyle) 

 TAdvOutlookList 

 TAdvPanel (via TAdvPanelStyler) 

 TAdvSmoothButton 

 TAdvSmoothCalculator 

 TAdvSmoothCalendar 

 TAdvSmoothComboBox 

 TAdvSmoothDatePicker 

 TAdvSmoothDock 

 TAdvSmoothExpanderButtonPanel 

 TAdvSmoothExpanderGroup 

 TAdvSmoothGauge 

 TAdvSmoothImageListBox 

 TAdvSmoothListbox 

 TAdvSmoothMegaMenu 

 TAdvSmoothMenu 

 TAdvSmoothMessageDialog 

 TAdvSmoothPanel 

 TAdvSmoothProgressBar 

 TAdvSmoothScrollBar 

 TAdvSmoothSlider 

 TAdvSmoothSlideShow 

 TAdvSmoothSpinner 

 TAdvSmoothSplashScreen 

 TAdvSmoothTabPager 

 TAdvSmoothTimeLine 

 TAdvSmoothToggleButton 

 TAdvSmoothTrackBar 

 TAdvSmoothTouchKeyboard 

 TAdvStringGrid & descending controls 

 TAdvTaskDialogEx 

 TAdvToolBar (via TAdvToolBarStyler) 

 TAdvToolBarPager (via TAdvToolBarStyler) 

 TAdvToolButton & TAdvRepeatButton 

 TAdvToolPanel, TAdvToolPanelTab 

 TInspectorBar & descending controls 

 TPlanner & descending controls 

 TPlannerCalendar 

 TPlannerDatePicker 

 TPlannerMonthView 

 TTodoList & descending controls 

 

You can make your own controls also easily TAdvFormStyler, TAdvAppStyler aware so that 

your controls also automatically change their appearance when the application and/or form 

style changes. To do this, it is sufficient to add and implement the ITMSStyle interface to your 

control. This code snippet shows a sample custom control that was made TMS style aware: 

 
interface 

 

uses 

  Classes, TAdvStyleIF; 

type 

  TMyCustomControl = class(TCustomControl, ITMSStyle) 

  public 

    procedure SetComponentStyle(AStyle: TTMSStyle); 

  end; 



 

Using the TMS styler components 

 

4/4 

 

{ TMyCustomControl } 

 

procedure TMyCustomControl.SetComponentStyle(AStyle: TTMSStyle); 

begin 

  case AStyle of 

  tsOffice2003Blue: // set properties correct here for the selected style 

  tsOffice2003Silver: 

  tsOffice2003Olive: 

  tsOffice2003Classic: 

  ... 

  end; 

end; 

 

How to have 2 different types of styles in one form? 

 

By default, TAdvFormStyler will assign the style configured to all components on the form 

automatically. You can however override this behaviour and implement 

AdvFormStyler.OnApplyStyle. This event is triggered for every component for which it will set 

the style. With setting the Allow parameter to false, the style will not be applied.  

 

We hope these new style control components will simplify & accelerate the programmers job to 

create a consistent user interface and make it easier than ever to switch your complete 

application appearance by setting a single property. 

 

 


