

Using the TMS styler components

1/4

Using the TMS form-wide or application-wide styler components

Over the past couple of years, appearances as these from Windows XP, Office 2003, Visual

Studio .NET and now Office 2007/2010 have set standards for how an application should look.

The techniques for defining the appearance of controls have also become more complex.

Before Windows XP, controls were generally flat with single colors for normal state, hover

state, checked or down state... With Windows XP, Office 2003, simple gradients for the

different control states have become the norm. Now with Office 2007/2010, appearance

control has become yet more complex. Controls can now have multiple radial/linear gradients

and have subtle transitioning of appearance from state to state. To be able to have full control

& flexibility over the appearance of controls, the number of properties has been steadily

increasing over the years.

At TMS software we have always tried and keep trying to provide components with the latest

look & feel as well as keeping backwards compatibility. We want to enable you to create

applications with a brand new appearance and simultaneously do not want to break the look &

feel of applications that were created perhaps years ago when installing new updates of the

components. As the requirements for appearance control have evolved over the years, so have

the properties to control look and feel of the TMS components. It has not always been easy to

apply new appearance types to existing controls that were originally not designed for more

complex appearances. This has caused that various components have sometimes different

ways to control the latest and greatest appearance, let alone to synchronously change

appearance of multiple controls to a new consistent style.

We have spent quite some effort to simplify form-wide and application-wide appearance

control for TMS components and possibly also your custom controls. To do this, two new

components have been designed:

TAdvFormStyler

TAdvAppStyler

A TAdvFormStyler is supposed to be dropped on a form. In a way, it will control just like

TXPManifest the style of the TMS controls on the form. A TAdvFormStyler will only affect

controls on the form itself. For application-wide appearance control, in addition to a

TAdvFormStyler on a form, a TAdvAppStyler component can be dropped on a datamodule and

is connected to the TAdvFormStyler components on the forms. By setting then a single

property in TAdvAppStyler on the datamodule, the complete application appearance can

change, both at design time but also dynamically at runtime.

Using the TMS styler components

2/4

Scenario

The component TAdvFormStyler has a property style. Setting this style property causes all

components on the form that support the interface to set the style to change to the selected

style. Similary, setting the style property for the TAdvAppStyler on a central datamodule

invokes all TAdvFormStyler style changes and thus the style of all TMS controls on the form.

Currently the TAdvFormStyler, TAdvAppStyler support following styles:

 tsOffice2003Blue : Office 2003 style on a blue XP theme

 tsOffice2003Silver : Office 2003 style on a silver XP theme

 tsOffice2003Olive : Office 2003 style on an olive XP theme

 tsOffice2003Classic : Office 2003 style on a non themed XP or pre XP operating system

 tsOffice2007Luna : Office 2007 Luna style

 tsOffice2007Obsidian : Office 2007 Obsidian style

 tsOffice2007Silver: Office 2007 Silver style

 tsWindowsXP : Windows XP / Office XP style

 tsWhidbey : Visual Studio 2005 style

 tsCustom : unforced style

 tsWindowsVista: Windows Vista style

 tsWindows7 : Windows 7 style

 tsTerminal : reduced color set for use with terminal servers

 tsOffice2010Blue : Office 2010 Blue style

 tsOffice2010Silver : Office 2010 Silver style

 tsOffice2010Black : Office 2010 Black style

Following TMS controls are currently TAdvFormStyler, TAdvAppStyler aware:

 TAdvAlertWindow

 TAdvCardList

 TAdvDockPanel

 TAdvInputTaskDialogEx

 TAdvMainMenu & TAdvPopupMenu (via TAdvMenuStyler)

 TAdvMemo

Using the TMS styler components

3/4

 TAdvNavBar

 TAdvOfficePager (via TAdvOfficePagerOfficeStyle)

 TAdvOutlookList

 TAdvPanel (via TAdvPanelStyler)

 TAdvSmoothButton

 TAdvSmoothCalculator

 TAdvSmoothCalendar

 TAdvSmoothComboBox

 TAdvSmoothDatePicker

 TAdvSmoothDock

 TAdvSmoothExpanderButtonPanel

 TAdvSmoothExpanderGroup

 TAdvSmoothGauge

 TAdvSmoothImageListBox

 TAdvSmoothListbox

 TAdvSmoothMegaMenu

 TAdvSmoothMenu

 TAdvSmoothMessageDialog

 TAdvSmoothPanel

 TAdvSmoothProgressBar

 TAdvSmoothScrollBar

 TAdvSmoothSlider

 TAdvSmoothSlideShow

 TAdvSmoothSpinner

 TAdvSmoothSplashScreen

 TAdvSmoothTabPager

 TAdvSmoothTimeLine

 TAdvSmoothToggleButton

 TAdvSmoothTrackBar

 TAdvSmoothTouchKeyboard

 TAdvStringGrid & descending controls

 TAdvTaskDialogEx

 TAdvToolBar (via TAdvToolBarStyler)

 TAdvToolBarPager (via TAdvToolBarStyler)

 TAdvToolButton & TAdvRepeatButton

 TAdvToolPanel, TAdvToolPanelTab

 TInspectorBar & descending controls

 TPlanner & descending controls

 TPlannerCalendar

 TPlannerDatePicker

 TPlannerMonthView

 TTodoList & descending controls

You can make your own controls also easily TAdvFormStyler, TAdvAppStyler aware so that

your controls also automatically change their appearance when the application and/or form

style changes. To do this, it is sufficient to add and implement the ITMSStyle interface to your

control. This code snippet shows a sample custom control that was made TMS style aware:

interface

uses

 Classes, TAdvStyleIF;

type

 TMyCustomControl = class(TCustomControl, ITMSStyle)

 public

 procedure SetComponentStyle(AStyle: TTMSStyle);

 end;

Using the TMS styler components

4/4

{ TMyCustomControl }

procedure TMyCustomControl.SetComponentStyle(AStyle: TTMSStyle);

begin

 case AStyle of

 tsOffice2003Blue: // set properties correct here for the selected style

 tsOffice2003Silver:

 tsOffice2003Olive:

 tsOffice2003Classic:

 ...

 end;

end;

How to have 2 different types of styles in one form?

By default, TAdvFormStyler will assign the style configured to all components on the form

automatically. You can however override this behaviour and implement

AdvFormStyler.OnApplyStyle. This event is triggered for every component for which it will set

the style. With setting the Allow parameter to false, the style will not be applied.

We hope these new style control components will simplify & accelerate the programmers job to

create a consistent user interface and make it easier than ever to switch your complete

application appearance by setting a single property.

