thSOftwa re LI Using the TMS styler components

Using the TMS form-wide or application-wide styler components

Over the past couple of years, appearances as these from Windows XP, Office 2003, Visual
Studio .NET and now Office 2007/2010 have set standards for how an application should look.
The techniques for defining the appearance of controls have also become more complex.
Before Windows XP, controls were generally flat with single colors for normal state, hover
state, checked or down state... With Windows XP, Office 2003, simple gradients for the
different control states have become the norm. Now with Office 2007/2010, appearance
control has become yet more complex. Controls can now have multiple radial/linear gradients
and have subtle transitioning of appearance from state to state. To be able to have full control
& flexibility over the appearance of controls, the number of properties has been steadily
increasing over the years.

At TMS software we have always tried and keep trying to provide components with the latest
look & feel as well as keeping backwards compatibility. We want to enable you to create
applications with a brand new appearance and simultaneously do not want to break the look &
feel of applications that were created perhaps years ago when installing new updates of the
components. As the requirements for appearance control have evolved over the years, so have
the properties to control look and feel of the TMS components. It has not always been easy to
apply new appearance types to existing controls that were originally not designed for more
complex appearances. This has caused that various components have sometimes different
ways to control the latest and greatest appearance, let alone to synchronously change
appearance of multiple controls to a new consistent style.

We have spent quite some effort to simplify form-wide and application-wide appearance
control for TMS components and possibly also your custom controls. To do this, two new
components have been designed:

TAdvFormStyler
TAdvAppStyler

A TAdvFormStyler is supposed to be dropped on a form. In a way, it will control just like
TXPManifest the style of the TMS controls on the form. A TAdvFormStyler will only affect
controls on the form itself. For application-wide appearance control, in addition to a
TAdvFormStyler on a form, a TAdvAppStyler component can be dropped on a datamodule and
is connected to the TAdvFormStyler components on the forms. By setting then a single
property in TAdvAppStyler on the datamodule, the complete application appearance can
change, both at design time but also dynamically at runtime.

1/4



thSOftwa re, I} Using the TMS styler components

Scenario

Application forms

Single property to
control application
appearance

Application datamodule

The component TAdvFormStyler has a property style. Setting this style property causes all
components on the form that support the interface to set the style to change to the selected
style. Similary, setting the style property for the TAdvAppStyler on a central datamodule
invokes all TAdvFormStyler style changes and thus the style of all TMS controls on the form.
Currently the TAdvFormStyler, TAdvAppStyler support following styles:

tsOffice2003Blue : Office 2003 style on a blue XP theme
tsOffice2003Silver : Office 2003 style on a silver XP theme
tsOffice20030live : Office 2003 style on an olive XP theme
tsOffice2003Classic : Office 2003 style on a non themed XP or pre XP operating system
tsOffice2007Luna : Office 2007 Luna style
tsOffice20070bsidian : Office 2007 Obsidian style
tsOffice2007Silver: Office 2007 Silver style

tsWindowsXP : Windows XP / Office XP style

tsWhidbey : Visual Studio 2005 style

tsCustom : unforced style

tsWindowsVista: Windows Vista style

tsWindows7 : Windows 7 style

tsTerminal : reduced color set for use with terminal servers
tsOffice2010Blue : Office 2010 Blue style
tsOffice2010Silver : Office 2010 Silver style
tsOffice2010Black : Office 2010 Black style

Following TMS controls are currently TAdvFormStyler, TAdvAppStyler aware:

TAdvAlertWindow

TAdvCardList

TAdvDockPanel

TAdvInputTaskDialogEx

TAdvMainMenu & TAdvPopupMenu (via TAdvMenuStyler)
TAdvMemo

2/4



thSOftwa re LI Using the TMS styler components

TAdvNavBar

TAdvOfficePager (via TAdvOfficePagerOfficeStyle)
TAdvOutlookList

TAdvPanel (via TAdvPanelStyler)
TAdvSmoothButton
TAdvSmoothCalculator
TAdvSmoothCalendar
TAdvSmoothComboBox
TAdvSmoothDatePicker
TAdvSmoothDock
TAdvSmoothExpanderButtonPanel
TAdvSmoothExpanderGroup
TAdvSmoothGauge
TAdvSmoothImageListBox
TAdvSmoothListbox
TAdvSmoothMegaMenu
TAdvSmoothMenu
TAdvSmoothMessageDialog
TAdvSmoothPanel
TAdvSmoothProgressBar
TAdvSmoothScrollBar
TAdvSmoothSlider
TAdvSmoothSlideShow
TAdvSmoothSpinner
TAdvSmoothSplashScreen
TAdvSmoothTabPager
TAdvSmoothTimelLine
TAdvSmoothToggleButton
TAdvSmoothTrackBar
TAdvSmoothTouchKeyboard
TAdvStringGrid & descending controls
TAdvTaskDialogEx

TAdvToolBar (via TAdvToolBarStyler)
TAdvToolBarPager (via TAdvToolBarStyler)
TAdvToolButton & TAdvRepeatButton
TAdvToolPanel, TAdvToolPanelTab
TInspectorBar & descending controls
TPlanner & descending controls
TPlannerCalendar
TPlannerDatePicker
TPlannerMonthView

TTodolList & descending controls

You can make your own controls also easily TAdvFormStyler, TAdvAppStyler aware so that
your controls also automatically change their appearance when the application and/or form
style changes. To do this, it is sufficient to add and implement the ITMSStyle interface to your
control. This code snippet shows a sample custom control that was made TMS style aware:

interface

uses
Classes, TAdvStylelF;
type
TMyCustomControl = class (TCustomControl, ITMSStyle)
public
procedure SetComponentStyle (AStyle: TTMSStyle);
end;

3/4



thSOftwa red Wl Using the TMS styler components

{ TMyCustomControl }

procedure TMyCustomControl.SetComponentStyle (AStyle: TTMSStyle);
begin
case AStyle of
tsOffice2003Blue: // set properties correct here for the selected style
tsOffice2003Silver:
tsOffice200301live:
tsOffice2003Classic:
end;
end;

How to have 2 different types of styles in one form?

By default, TAdvFormStyler will assign the style configured to all components on the form
automatically. You can however override this behaviour and implement
AdvFormStyler.OnApplyStyle. This event is triggered for every component for which it will set
the style. With setting the Allow parameter to false, the style will not be applied.

We hope these new style control components will simplify & accelerate the programmers job to

create a consistent user interface and make it easier than ever to switch your complete
application appearance by setting a single property.

4/4



